设A是m*n矩阵,B是n*s矩阵,x是列向量,证明:AB=O的充分必要条件是B的每一列都是齐次线性方程组AX=O的解
3个回答
展开全部
设B=[b1,b2,……,bs]
那么
AB=O
<=> A[b1,b2,……,bs]=[O,O,……,O]
<=>Abi=0,(i=1……s)
即bi(i=1,2,...,s)是AX=O的解
那么
AB=O
<=> A[b1,b2,……,bs]=[O,O,……,O]
<=>Abi=0,(i=1……s)
即bi(i=1,2,...,s)是AX=O的解
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这不很显然嘛
B设为[b1,b2,……,bs]
那么AB=O就可以写成
A[b1,b2,……,bs]=[O,O,……,O]
所以bi(i=1……s)是AX=O的解
B设为[b1,b2,……,bs]
那么AB=O就可以写成
A[b1,b2,……,bs]=[O,O,……,O]
所以bi(i=1……s)是AX=O的解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
g m,dnh, bnkmctiy,.c,l,.xdr. ././tdui
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询