六年级的奥数题有吗?还要题目的解题方法哦!

急用!!!!!!!!!!!!... 急用!!!!!!!!!!!! 展开
 我来答
雨睿识ey
2007-02-05 · TA获得超过2181个赞
知道答主
回答量:84
采纳率:0%
帮助的人:0
展开全部
中国剩余定理”算理及其应用:(可以让你学会并考别人)

为什么这样解呢?因为70是5和7的公倍数,且除以3余1。21是3和7的公倍数,且除以5余1。15是3和5的公倍数,且除以7余1。(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。

用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。

例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几?

题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;

使15被4除余1,用15×3=45;

使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274,

因为,274>60,所以,274-60×4=34,就是所求的数。

例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?

题中3、7、8三个数两两互质。

则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

为了使56被3除余1,用56×2=112;

使24被7除余1,用24×5=120。

使21被8除余1,用21×5=105;

然后,112×2+120×4+105×5=1229,

因为,1229>168,所以,1229-168×7=53,就是所求的数。

例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

题中5、8、11三个数两两互质。

则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

为了使88被5除余1,用88×2=176;

使55被8除余1,用55×7=385;

使40被11除余1,用40×8=320。

然后,176×4+385×3+320×2=2499,

因为,2499>440,所以,2499-440×5=299,就是所求的数。

例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)

题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;

使45被7除余1,用45×5=225;

使63被5除余1,用63×2=126。

然后,280×5+225×1+126×2=1877,

因为,1877>315,所以,1877-315×5=302,就是所求的数。

例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)

题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;

使45被7除余1,用45×5=225;

使63被5除余1,用63×2=126。

然后,280×6+225×2+126×3=2508,

因为,2508>315,所以,2508-315×7=303,就是所求的数。

(例5与例4的除数相同,那么各个余数要乘的“数”也分别相同,所不同的就是最后两步。)

“中国剩余定理”简介:

我国古代数学名著《孙子算经》中,记载这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”用现在的话来说就是:“有一批物品,三个三个地数余二个,五个五个地数余三个,七个七个地数余二个,问这批物品最少有多少个。”这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。

那么,这个问题怎么解呢?明朝数学家程大位把这一解法编成四句歌诀:

三人同行七十(70)稀,

五树梅花廿一(21)枝,

七子团圆正月半(15),

除百零五(105)便得知。

歌诀中每一句话都是一步解法:第一句指除以3的余数用70去乘;第二句指除以5的余数用21去乘;第三句指除以7的余数用15去乘;第四句指上面乘得的三个积相加的和如超过105,就减去105的倍数,就得到答案了。即:

70×2+21×3+15×2-105×2=23

《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但由于题目比较简单,甚至用试猜的方法也能求得,所以尚没有上升到一套完整的计算程序和理论的高度。真正从完整的计算程序和理论上解决这个问题的,是南宋时期的数学家秦九韶。秦九韶于公元1247年写成的《数书九章》一书中提出了一个数学方法“大衍求一术”,系统地论述了一次同余式组解法的基本原理和一般程序。

从《孙子算经》到秦九韶《数书九章》对一次同余式问题的研究成果,在19世纪中期开始受到西方数学界的重视。1852年,英国传教士伟烈亚力向欧洲介绍了《孙子算经》的“物不知数”题和秦九韶的“大衍求一术”;1876年,德国人马蒂生指出,中国的这一解法与西方19世纪高斯《算术探究》中关于一次同余式组的解法完全一致。从此,中国古代数学的这一创造逐渐受到世界学者的瞩目,并在西方数学史著作中正式被称为“中国剩余定理”。

还有一些测试题

六年级奥数测试题

(每道题都要写出详细解答过程)

1. 三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。

2. 已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,问A最小是几?

3. 把自然数依次排成以下数阵:

1,2,4,7,…

3,5,8,…

6,9,…

10,…



现规定横为行,纵为列。求

(1) 第10行第5列排的是哪一个数?

(2) 第5行第10列排的是哪一个数?

(3) 2004排在第几行第几列?

4. 三个质数的乘积恰好等于它们的和的11倍,求这三个质数。

5. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

6. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4根彩旗没动,问现在的彩旗间隔多少米?

7. 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?

8. 求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少个?

9. 有一列数:1,999,998,1,997,996,1,…从第3个数起,每一个数都是它前面2个数中大数减小数的差。求从第1个数起到999个数这999个数之和。

10. 从200到1800的自然数中有奇数个约数的数有多少个?

11. 在下图中,有左右两个一样的等腰直角三角形,其面积都是100,分别沿着图中的虚线剪下两个小正方形,请你求一下两个正方形的面积各是多少,并比较大小。

12. 甲说:“我和乙、丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们三人仍有钱100元。”丙说:“我的钱连30元都不到。”问三人原来各有多少钱?

13. B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?

14. 一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?

15. 把1296分为甲、乙、丙、丁四个数,如果甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。求这四个数各是多少?
kb音乐之神
2007-02-10 · 贡献了超过114个回答
知道答主
回答量:114
采纳率:0%
帮助的人:0
展开全部
一个数被3除余1,被4除余2,被5除余4,这个数最小是几?

题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;

使15被4除余1,用15×3=45;

使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274,

因为,274>60,所以,274-60×4=34,就是所求的数。

例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?

题中3、7、8三个数两两互质。

则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

为了使56被3除余1,用56×2=112;

使24被7除余1,用24×5=120。

使21被8除余1,用21×5=105;

然后,112×2+120×4+105×5=1229,

因为,1229>168,所以,1229-168×7=53,就是所求的数。

例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

题中5、8、11三个数两两互质。

则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

为了使88被5除余1,用88×2=176;

使55被8除余1,用55×7=385;

使40被11除余1,用40×8=320。

然后,176×4+385×3+320×2=2499,

因为,2499>440,所以,2499-440×5=299,就是所求的数。

例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)

题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;

使45被7除余1,用45×5=225;

使63被5除余1,用63×2=126。

然后,280×5+225×1+126×2=1877,

因为,1877>315,所以,1877-315×5=302,就是所求的数。

例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)

题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;

使45被7除余1,用45×5=225;

使63被5除余1,用63×2=126。

然后,280×6+225×2+126×3=2508,

因为,2508>315,所以,2508-315×7=303,就是所求的数。

(例5与例4的除数相同,那么各个余数要乘的“数”也分别相同,所不同的就是最后两步。)

“中国剩余定理”简介:

我国古代数学名著《孙子算经》中,记载这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”用现在的话来说就是:“有一批物品,三个三个地数余二个,五个五个地数余三个,七个七个地数余二个,问这批物品最少有多少个。”这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。

那么,这个问题怎么解呢?明朝数学家程大位把这一解法编成四句歌诀:

三人同行七十(70)稀,

五树梅花廿一(21)枝,

七子团圆正月半(15),

除百零五(105)便得知。

歌诀中每一句话都是一步解法:第一句指除以3的余数用70去乘;第二句指除以5的余数用21去乘;第三句指除以7的余数用15去乘;第四句指上面乘得的三个积相加的和如超过105,就减去105的倍数,就得到答案了。即:

70×2+21×3+15×2-105×2=23

《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但由于题目比较简单,甚至用试猜的方法也能求得,所以尚没有上升到一套完整的计算程序和理论的高度。真正从完整的计算程序和理论上解决这个问题的,是南宋时期的数学家秦九韶。秦九韶于公元1247年写成的《数书九章》一书中提出了一个数学方法“大衍求一术”,系统地论述了一次同余式组解法的基本原理和一般程序。

从《孙子算经》到秦九韶《数书九章》对一次同余式问题的研究成果,在19世纪中期开始受到西方数学界的重视。1852年,英国传教士伟烈亚力向欧洲介绍了《孙子算经》的“物不知数”题和秦九韶的“大衍求一术”;1876年,德国人马蒂生指出,中国的这一解法与西方19世纪高斯《算术探究》中关于一次同余式组的解法完全一致。从此,中国古代数学的这一创造逐渐受到世界学者的瞩目,并在西方数学史著作中正式被称为“中国剩余定理”。

还有一些测试题

六年级奥数测试题

(每道题都要写出详细解答过程)

1. 三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。

2. 已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,问A最小是几?

3. 把自然数依次排成以下数阵:

1,2,4,7,…

3,5,8,…

6,9,…

10,…



现规定横为行,纵为列。求

(1) 第10行第5列排的是哪一个数?

(2) 第5行第10列排的是哪一个数?

(3) 2004排在第几行第几列?

4. 三个质数的乘积恰好等于它们的和的11倍,求这三个质数。

5. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

6. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4根彩旗没动,问现在的彩旗间隔多少米?

7. 13511,13903,14589被自然数m除所得余数相同,问m最大值是多少?

8. 求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少个?

9. 有一列数:1,999,998,1,997,996,1,…从第3个数起,每一个数都是它前面2个数中大数减小数的差。求从第1个数起到999个数这999个数之和。

10. 从200到1800的自然数中有奇数个约数的数有多少个?

11. 在下图中,有左右两个一样的等腰直角三角形,其面积都是100,分别沿着图中的虚线剪下两个小正方形,请你求一下两个正方形的面积各是多少,并比较大小。

12. 甲说:“我和乙、丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们三人仍有钱100元。”丙说:“我的钱连30元都不到。”问三人原来各有多少钱?

13. B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?

14. 一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?

15. 把1296分为甲、乙、丙、丁四个数,如果甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。求这四个数各是多少?
回答者:【白龙】 - 见习魔法师 二级 2-5 12:53

1.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+……+1(98*99*100)=
原式=1/2*[2/(1*2*3)+2/(2*3*4)+...+2/(98*99*100)]
=1/2*[(3-1)/(1*2*3)+(4-2)/(2*3*4)+...+(100-98)/(98*99*100)]
=1/2*[3/(1*2*3)-1/(1*2*3)+4/(2*3*4)-2/(2*3*4)+...+100/(98*99*100)-98/(98*99*100)]
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/(98*99)-1/(99*100)]
=1/2*[1/2-1/9900]
=4949/19800

2.甲、乙两班同学同时从学校出发到相距24km的公园。学生速度为每
小时5km,有一辆车速度为每小时35km,这辆车恰好能坐一个班的学生。两个班同学最短用( )时间同时到达。
设乙步行距离为S km,
那么甲坐车走了4S km
甲坐步行走了(24-4S) km
乙坐车走了(24-4S)*7 km

列方程得
S+(24-4S)*7=24
解得S=16/3
那么,乙步行用时16/15 h
乙坐车走了56/3 km,用时8/15 h
共用时1.6 h

3.A说:“我今天说过3次错话。”B说:“那么,这是你今天说的第4次错话。”那么B说的话( )
如果A真说过3次错话那么B说的就是错话
如果A没说过3次错话那么B说的也是错话
所以B说的是错话
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梦幻╅天使
2007-02-12
知道答主
回答量:28
采纳率:0%
帮助的人:0
展开全部
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?

2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?

3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?

4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?

5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?

6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?

7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?

8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?

9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .

□ +□□ =□□□

问算式中的三位数最大是什么数?

10. 有一个号码是六位数,前四位是 2857,后两位记不清,即

2857□□

但是我记得,它能被 11和 13整除,请你算出后两位数 .

11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?

12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?

(硬币只有 5元、 2元、 1元三种 .)

13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,

14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?

15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?

16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?

17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?

18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?

19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?

20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?

21.若a为自然数,证明10│(a2005-a1949).

22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.

23.求被3除余2,被5除余3,被7除余5的最小三位数.

24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.

25.试证不小于5的质数的平方与1的差必能被24整除.

26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?

27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?

28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?

29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。

30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?

[ 答案 ]

1. 从右边开始数,他是第 19位 .

2. 4 月2 日上午9 时.

3.9名工人 .

4.有 5个 .

13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 .

5.至少有 11人 .

人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 .

6.最大的两位约数是 74.

1998= 2× 3× 3× 3× 37

7.第四次最少要得 96分 .

88+( 90- 88)× 4=96(分)

8.最多有 5个月有 5个星期日 .

1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 .

9.105.

和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8.

10.后两位数是 14.

285700÷( 11× 13) =1997余 129

余数 129再加 14就能被 143整除 .

11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .

12.最少 5元、 2元、 1元的硬币共 11个 .

购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 .

14.A班每人能得 35张 .

设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是:

15.第一个数报 6.

对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9.

123÷ 9= 13…… 6.

你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123.

16.4

17.甲26又2/3天,乙40天

18.21

19.14又1/3

20.10

21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。

22.750

23.384

24.600

25.一班48人,二班42人

26.15

27.82

28.312

29.最少5个,最多7个

30.784
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2007li
2007-02-09
知道答主
回答量:32
采纳率:0%
帮助的人:0
展开全部
1.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+……+1(98*99*100)=
原式=1/2*[2/(1*2*3)+2/(2*3*4)+...+2/(98*99*100)]
=1/2*[(3-1)/(1*2*3)+(4-2)/(2*3*4)+...+(100-98)/(98*99*100)]
=1/2*[3/(1*2*3)-1/(1*2*3)+4/(2*3*4)-2/(2*3*4)+...+100/(98*99*100)-98/(98*99*100)]
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/(98*99)-1/(99*100)]
=1/2*[1/2-1/9900]
=4949/19800

2.甲、乙两班同学同时从学校出发到相距24km的公园。学生速度为每
小时5km,有一辆车速度为每小时35km,这辆车恰好能坐一个班的学生。两个班同学最短用( )时间同时到达。
设乙步行距离为S km,
那么甲坐车走了4S km
甲坐步行走了(24-4S) km
乙坐车走了(24-4S)*7 km

列方程得
S+(24-4S)*7=24
解得S=16/3
那么,乙步行用时16/15 h
乙坐车走了56/3 km,用时8/15 h
共用时1.6 h

3.A说:“我今天说过3次错话。”B说:“那么,这是你今天说的第4次错话。”那么B说的话( )
如果A真说过3次错话那么B说的就是错话
如果A没说过3次错话那么B说的也是错话
所以B说的是错话
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友15929a4b4
2007-01-29 · TA获得超过3732个赞
知道小有建树答主
回答量:363
采纳率:0%
帮助的人:0
展开全部
您好:
1.自然数n=123456....99100,那么n被9所得的余数是( ).

2.1乘2分之1+2乘3分之1+3乘4分之1+......+2001乘2002分之1=( ).

3.有336枝铅笔,252块橡皮,210个文具盒,用这些文具分成若干份同样的礼物,最多可分成( )份.

答案:
1、数字和是901,除以9余1,余数就是1。
2、先求出2分之1+3分之1+4分之1+……+2001分之1+2002分之1等于多少(假设是X),再用2002-X,就求到了,至于答案是多少,我也不知道。
3、就是求它们的最大公约数,是42。

参考资料: http://zhidao.baidu.com/question/3607480.html

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式