一道高一必修一关于偶函数的数学题。
一道高中数学题:函数f(x)是偶函数,且当x>0时,f(x)=X*2-X(是X的平方减去X),则当x<0时,f(x)的解析式为?(要求解题思路清晰)...
一道高中数学题:函数f(x)是偶函数,且当x>0时,f(x)=X*2-X(是X的平方减去X),则当x<0时,f(x)的解析式为?(要求解题思路清晰)
展开
展开全部
偶函数的意思是X为正和为负时,只要绝对值相等则f(x)的值是相等的,Y轴左右两边是对称的,即f(x)=f(-x)。理解这道题,需要分清楚x的正负,我在解答的过程中将x的正负标清楚了。
解:当x<0时,-x>0,因为f(x)是偶函数,所以f(x)=f(-x) (x<0),此时f(-x)的自变量是-x (x<0),且-x>0,可以代入f(x)=X^2-X (x>0),得到f(-x)=(-x)^2-(-x)=x^2+x,所以f(x)=x^2+x(x<0).
解:当x<0时,-x>0,因为f(x)是偶函数,所以f(x)=f(-x) (x<0),此时f(-x)的自变量是-x (x<0),且-x>0,可以代入f(x)=X^2-X (x>0),得到f(-x)=(-x)^2-(-x)=x^2+x,所以f(x)=x^2+x(x<0).
展开全部
f(x)=x^2+x
方法1:解题过程可以通过图文结合的方式给出。
x>0时,f(x)为经过x=0,x=1的抛物线,对称轴为x=1/2,开口向上。因为为偶函数,所以图形关于y轴对称,显而易见,此时抛物线是经过x=0,x=-1的,对称轴为x=-(1/2),开口向上,所以x<0时,f(x)的解析式为x^2+x.
注:x^2是指x的平方。
方法2:x>0时f(x)=x^2-x,得x<0时f(-x)=(-x)^2-(-x)=x^2+x
又因为f(x)为偶函数,所以f(-x)=f(x)
从而得x<0时f(x)=f(-x)=x^2+x
方法1:解题过程可以通过图文结合的方式给出。
x>0时,f(x)为经过x=0,x=1的抛物线,对称轴为x=1/2,开口向上。因为为偶函数,所以图形关于y轴对称,显而易见,此时抛物线是经过x=0,x=-1的,对称轴为x=-(1/2),开口向上,所以x<0时,f(x)的解析式为x^2+x.
注:x^2是指x的平方。
方法2:x>0时f(x)=x^2-x,得x<0时f(-x)=(-x)^2-(-x)=x^2+x
又因为f(x)为偶函数,所以f(-x)=f(x)
从而得x<0时f(x)=f(-x)=x^2+x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为当x>0时,f(x)=X^2-X 所以当x<0时 ,-X>0,代入
f(-X)=(-X)^2-(-X)=X^2+X
又函数f(x)是偶函数 所以f(x)=f(-x)
所以当x<0时 f(x)=X^2+X
f(-X)=(-X)^2-(-X)=X^2+X
又函数f(x)是偶函数 所以f(x)=f(-x)
所以当x<0时 f(x)=X^2+X
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询