已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=a1a2……an-1若数列{bn
已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=a1a2……an-1,若数列{bn}(n∈N*)满足bn=a1a2……an...
已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=a1a2……an-1,若数列{bn}(n∈N*)满足bn=a1a2……an-a1^2-a2^2-……-an^211.求b5 2,求证n>5时bn+1-bn=1
展开
2个回答
2014-03-10
展开全部
解:由已知,b5=a1a2…a5-a12-a22-…-a52
=1×2×3×4×5-(12+22+32+42+52)
=120-55
=65.
当n≥5时,由an+1=a1a2…an-1,移向得出a1a2…an-1=an+1+1 ①
∵bn=a1a2…an-a12-a22-…-an2,②
∴bn+1=a1a2…anan+1-a12-a22-…-an2-an+12 ③
③-②得bn+1-bn=a1a2…anan+1-a1a2…an-an+12
=a1a2…an(an+1-1)-an+12 (将①式代入)
=(an+1+1)(an+1-1)-an+12=an+12-1-an+12
=-1
=1×2×3×4×5-(12+22+32+42+52)
=120-55
=65.
当n≥5时,由an+1=a1a2…an-1,移向得出a1a2…an-1=an+1+1 ①
∵bn=a1a2…an-a12-a22-…-an2,②
∴bn+1=a1a2…anan+1-a12-a22-…-an2-an+12 ③
③-②得bn+1-bn=a1a2…anan+1-a1a2…an-an+12
=a1a2…an(an+1-1)-an+12 (将①式代入)
=(an+1+1)(an+1-1)-an+12=an+12-1-an+12
=-1
2014-03-10
展开全部
b(n+1)-bn=a1a2......ana(n+1) - a1a2...an - a(n+1)^2
a1a2...an = a(n+1) + 1
a1a2...an = a(n+1) + 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询