在三角形ABC中,角ABC等于90度,D是BC的中点,DE垂直BC,CE平行AD,若AC等于2,CE等于4,问题,求证
1个回答
展开全部
1) 相似 由题意得:∠APA1=∠BPB1=α AP= A1P BP=B1P 则∠PAA1 =∠PBB1 = ∵∠PBB1 =∠EBF ∴∠PAE=∠EBF 又∵∠BEF=∠AEP ∴△BEF ∽△AEP (2)存在,理由如下: 易得:△BEF ∽△AEP 若要使得△BEF≌△AEP,只需要满足BE=AE即可 ∴∠BAE=∠ABE ∵∠BAC=60° ∴∠BAE= ∵∠ABE=β ∠BAE=∠ABE ∴ 即α=2β+60° (3)连结BD,交A1B1于点G, 过点A1作A1H⊥AC于点H. ∵∠B1 A1P=∠A1PA=60° ∴A1B1∥AC 由题意得:AP= A1 P ∠A=60° ∴△PAA1是等边三角形 ∴A1H= 在Rt△ABD中,BD= ∴BG= ∴ (0≤x<2)
希望采纳
希望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询