定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x 2 .(1)求证:2是函数f(x

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2.(1)求证:2是函数f(x)的一个周期;(2)求f(x)在区间[2k-1,... 定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x 2 .(1)求证:2是函数f(x)的一个周期;(2)求f(x)在区间[2k-1,2k+1],k∈Z上的函数解析式;(3)是否存在整数k,使 f(x)+2kx-9 x >0 对任意x∈[2k-1,2k+1]恒成立?若存在,请求出k的取值范围;若不存在,请说明理由. 展开
 我来答
龚亦柳
2014-09-07 · 超过77用户采纳过TA的回答
知道答主
回答量:145
采纳率:100%
帮助的人:66.5万
展开全部
(1)因为f(x+2)=f[(x+1)+1]=-f(x+1)=-[-f(x)]=f(x)
所以:2是函数f(x)的一个周期(2分)
(2)∵f(x)是以2为周期的函数,即f(x-2k)=f(x),k∈Z
设x∈[2k-1,2k+1],则x-2k∈[-1,1]∴f(x-2k)=(x-2k) 2
即f(x)=(x-2k) 2 ,x∈[2k-1,2k+1](k∈Z)(6分)
(3)当x∈[2k-1,2k+1]时,
f(x)+2kx-9
x
>0?
x 2 -2kx+4 k 2
x
>0

①当k≥1时,则2k-1≥1,∴x>0
∴原题等价于x 2 -2kx+4k 2 -9>0对任意x∈[2k-1,2k+1]恒成立.
设g(x)=x 2 -2kx+4k 2 -9
当k≥1时,对称轴x=k≤2k-1
则g(2k-1)=4k 2 -2k-8≥0,
解得 k≥
1+
33
3
k≤
1-
33
4
∴整数k≥2(10分)
②当k≤-1时,则2k+1≤-1,∴x<0,
∴原题等价于x 2 -2kx+4k 2 -9<0对任意x∈[2k-1,2k+1]恒成立,
设g(x)=x 2 -2kx+4k 2 -9
当k≤-1时,对称轴x=k≥2k+1
则g(2k-1)=4k 2 -2k-8>0,
解得
1-
33
3
<k<
1+
33
4
∴整数k=-1(14分)
③当k=0时,原命题等价于
x 2 -9
x
>0
对任意x∈[-1,1]恒成立
当x=1时,则-8>0显然不成立∴k≠0(15分)
综上所述,所求k的取值范围是[2,+∞)∪-1.(16分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式