某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每... 某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本) 展开
 我来答
尼玛君uv
推荐于2017-12-16 · 超过52用户采纳过TA的回答
知道答主
回答量:107
采纳率:100%
帮助的人:104万
展开全部
(1) y=﹣2x 2 +120x﹣1600,20≤x≤40;(2) 30元/千克, 200元;(3)25.


试题分析:(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;
(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;
(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.
试题解析:(1)y=w(x﹣20)
=(x﹣20)(﹣2x+80)
=﹣2x 2 +120x﹣1600,
则y=﹣2x 2 +120x﹣1600.
由题意,有
解得20≤x≤40.
故y与x的函数关系式为:y=﹣2x 2 +120x﹣1600,自变量x的取值范围是20≤x≤40;
(2)∵y=﹣2x 2 +120x﹣1600=﹣2(x﹣30) 2 +200,
∴当x=30时,y有最大值200.
故当销售价定为30元/千克时,每天可获最大销售利润200元;
(3)当y=150时,可得方程﹣2x 2 +120x﹣1600=150,
整理,得x 2 ﹣60x+875=0,
解得x 1 =25,x 2 =35.
∵物价部门规定这种产品的销售价不得高于28元/千克,∴x 2 =35不合题意,应舍去.
故当销售价定为25元/千克时,该农户每天可获得销售利润150元.
考点: 1.二次函数的应用;2.一元二次方程的应用.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式