(2012?佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上

(2012?佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.(1)求证:平面P... (2012?佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.(1)求证:平面PAC⊥平面BEF;(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值. 展开
 我来答
血刺疯子丶m44
2014-09-17 · TA获得超过130个赞
知道答主
回答量:111
采纳率:0%
帮助的人:158万
展开全部
解答:(1)证明:∵PB⊥底面ABC,且AC?底面ABC,∴AC⊥PB,
由∠BCA=90°,可得AC⊥CB,
又∵PB∩CB=B,∴AC⊥平面PBC,
∵BE?平面PBC,∴AC⊥BE,
∵PB=BC,E为PC中点,∴BE⊥PC,
∵AC∩PC=C,∴BE⊥平面PAC,
∵BE?平面BEF,∴平面PAC⊥平面BEF;
(2)解:取AF的中点G,AB的中点M,连接CG,CM,GM,
∵E为PC的中点,2PF=AF,∴EF∥CG,
∵CG?平面BEF,EF?平面BEF,
∴CG∥平面BEF.
同理可证:GM∥平面BEF,∵CG∩GM=G,∴平面CMG∥平面BEF.
则平面CMG与平面平面BEF所成的二面角的平面角(锐角)就等于平面ABC与平面BEF所成的二面角的平面角(锐角).
∵PB⊥底面ABC,CM?平面ABC
∴CM⊥PB,
∵CM⊥AB,PB∩AB=B,∴CM⊥平面PAB,
∵GM?平面PAB,∴CM⊥GM,
而CM为平面CMG与平面ABC的交线,
又AM?底面ABC,GM?平面CMG,∴∠AMG为二面角G-CM-A的平面角
根据条件可知AM=
2
,AG=
1
3
PA=
2
3
3

在△PAB中,cos∠GAM=
AB
AP
6
3

在△AGM中,由余弦定理求得MG=
6
3
,∴cos∠AMG=
3
3

故平面ABC与平面PEF所成角的二面角(锐角)的余弦值为
3
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式