如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,

如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值... 如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是(  )A.4≥x>2.4B.4≥x≥2.4C.4>x>2.4D.4>x≥2.4 展开
 我来答
贼鱡0061
推荐于2016-09-09 · 超过71用户采纳过TA的回答
知道答主
回答量:120
采纳率:0%
帮助的人:63万
展开全部
解:连接AP.
∵AB=6,AC=8,BC=10,
∴AB2+AC2=36+64=100,BC2=100,
∴AB2+AC2=BC2
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴∠AEP=∠AFP=∠BAC=90°,
∴四边形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M为EF中点,
∴AM=
1
2
EF=
1
2
AP,
当AP⊥BC时,AP值最小,
此时S△BAC=
1
2
×6×8=
1
2
×10×AP,
AP=4.8,
即AP的范围是AP≥4.8,
∴2AM≥4.8,
∴AM的范围是AM≥2.4(即x≥2.4).
综上所述,x的取值范围是:2.4≤x<4.
故选:D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式