在△ABC中,AB=AC,P是BC上任意一点.(1)如图①,若P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD?
根据三角形定理得:
(1)如图,连接AP,则S△ABC=S△ABP+S△ACP,
所以,
1/2 AC•BD=1/2 AB•PF+1/2AC•PE,
∵AB=AC,
∴BD=PE+PF;
(2)连接AP,则S△ABC=S△ABP-S△ACP,
所以,1/ 2 AB•CD=1/ 2 AB•PF-1/2 AC•PE,
∵AB=AC,
∴CD=PF-PE.
扩展资料:
性质
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12、 等底同高的三角形面积相等。
1、3 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
16、 在同一个三角形内,大边对大角,大角对大边。
19、三角形具有稳定性。
参考资料:百度百科——三角形