(2012?天水)如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交A

(2012?天水)如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于点E,交BC边于点F,交AC于点O,分别连接AF... (2012?天水)如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于点E,交BC边于点F,交AC于点O,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)过E点作AD的垂线EP交AC于点P,求证:2AE2=AC?AP;(3)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长. 展开
 我来答
对存唯7493
推荐于2016-11-05 · 超过59用户采纳过TA的回答
知道答主
回答量:123
采纳率:0%
帮助的人:59.6万
展开全部
解答:(1)证明:当顶点A与C重合时,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在矩形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
∠AOE=∠COF
OA=OC
∠EAO=∠FCO

∴△AOE≌△COF(ASA),
∴OE=OF,
∵OA=OC,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形.

(2)证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP,
∴△AOE∽△AEP,
AE
AP
=
AO
AE

即AE2=AO?AP,
∵AO=
1
2
AC,
∴AE2=
1
2
AC?AP,
∴2AE2=AC?AP.

(3)解:设AB=xcm,BF=ycm.
∵由(1)四边形AFCE是菱形,
∴AF=AE=10cm.
∵∠B=90°,
∴x2+y2=100.
∴(x+y)2-2xy=100①.
∵△ABF的面积为24cm2
1
2
xy=24.即xy=48 ②.
由①、②得(x+y)2=196.
∴x+y=14或x+y=-14(不合题意,舍去).
∴△ABF的周长为:x+y+AF=14+10=24(cm).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式