高二数列的题目
设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数列{An}的通项公式1.a(n+...
设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数列{An}的通项公式
1.a(n+1)=S(n+1)-Sn=4a(n)+2-4a(n-1)-2=4a(n)-4a(n-1)
bn/n(n-1)=a(n+1)-2a(n) / a(n)-2*a(n-1)=2a(n)-4a(n-1) /a(n)-2a(n-1)=2为常数
所以{bn}为等比数列 首项为3 公比为2
2. an+1-2an=bn=3*2^n-1
an+1=2an+3*2^n-1
an+1+A=2(an+A)
A=3*2^n-1
所以{an+3*2^n-1}为GP 首项为4 公比为2
an=2^n-1
这是我的解题过程 第二小题有点乱来了。。。哪里出错了 - -
(2)若a>0 a√a√a√a√,,,=?
(3)等差数列{an}的前n项之和为Sn 已知limn到正无穷=-a1/9 (a1>0) 则Sn的最大值为
要过程思路!
看清楚我问的是3个问题 第一个问题后面附了我的解题过程 可是经验算答案是错的 第二问第三问呢?过程呢? 展开
1.a(n+1)=S(n+1)-Sn=4a(n)+2-4a(n-1)-2=4a(n)-4a(n-1)
bn/n(n-1)=a(n+1)-2a(n) / a(n)-2*a(n-1)=2a(n)-4a(n-1) /a(n)-2a(n-1)=2为常数
所以{bn}为等比数列 首项为3 公比为2
2. an+1-2an=bn=3*2^n-1
an+1=2an+3*2^n-1
an+1+A=2(an+A)
A=3*2^n-1
所以{an+3*2^n-1}为GP 首项为4 公比为2
an=2^n-1
这是我的解题过程 第二小题有点乱来了。。。哪里出错了 - -
(2)若a>0 a√a√a√a√,,,=?
(3)等差数列{an}的前n项之和为Sn 已知limn到正无穷=-a1/9 (a1>0) 则Sn的最大值为
要过程思路!
看清楚我问的是3个问题 第一个问题后面附了我的解题过程 可是经验算答案是错的 第二问第三问呢?过程呢? 展开
3个回答
展开全部
1、A(n+1)=S(n+1)-Sn=4A(n)+2-4A(n-1)-2=4A(n)-4A(n-1)
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2,Bn=3*2^(n-1).
A(n+1)-2An=Bn=3*2^(n-1).同除以2^(n+1)
取Cn=An/2^n,C1=1/2则
C(n+1)-Cn=3/4故Cn=(3n-1)/4,
因此An=2^n*(3n-1)/4
2、若a>0 a√a√a√a√,,,=x,则有x=a√x(这步懂不,你注意看式子的特点,后面一直是无穷的那么后面的一部分也就是X咯)故x=a²
3、 已知limn到正无穷=-a1/9 (a1>0)(这是啥意思)
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2,Bn=3*2^(n-1).
A(n+1)-2An=Bn=3*2^(n-1).同除以2^(n+1)
取Cn=An/2^n,C1=1/2则
C(n+1)-Cn=3/4故Cn=(3n-1)/4,
因此An=2^n*(3n-1)/4
2、若a>0 a√a√a√a√,,,=x,则有x=a√x(这步懂不,你注意看式子的特点,后面一直是无穷的那么后面的一部分也就是X咯)故x=a²
3、 已知limn到正无穷=-a1/9 (a1>0)(这是啥意思)
展开全部
1、A(n+1)=S(n+1)-Sn=4A(n)+2-4A(n-1)-2=4A(n)-4A(n-1)
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2
2、an+1-2an=bn=3*(2^n-1)
an+1=2an+3*(2^n-1)
an+1+A=2(an+A)
A=3*(2^n-1)
所以{an+3*(2^n-1)}为等比数列,首项为4 公比为2
an=2^n-1
3、a>0 a√a√a√a√,,,=0
4、等差数列{an}的前n项之和为Sn 已知liman到正无穷=-a1/9 (a1>0) 则Sn的最大值为8a1/9
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2
2、an+1-2an=bn=3*(2^n-1)
an+1=2an+3*(2^n-1)
an+1+A=2(an+A)
A=3*(2^n-1)
所以{an+3*(2^n-1)}为等比数列,首项为4 公比为2
an=2^n-1
3、a>0 a√a√a√a√,,,=0
4、等差数列{an}的前n项之和为Sn 已知liman到正无穷=-a1/9 (a1>0) 则Sn的最大值为8a1/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、A(n+1)=S(n+1)-Sn=4A(n)+2-4A(n-1)-2=4A(n)-4A(n-1)
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2
2、an+1-2an=bn=3*(2^n-1)
an+1=2an+3*(2^n-1)
an+1+A=2(an+A)
A=3*(2^n-1)
所以{an+3*(2^n-1)}为等比数列,首项为4 公比为2
an=2^n-1
的最大值为8a1/9
谢谢
A(n+1)-2An=2(An-2A(n-1)) A1=1,A2=5,
Bn=2B(n-1) B1=3,
所以{bn}为等比数列 首项为3 公比为2
2、an+1-2an=bn=3*(2^n-1)
an+1=2an+3*(2^n-1)
an+1+A=2(an+A)
A=3*(2^n-1)
所以{an+3*(2^n-1)}为等比数列,首项为4 公比为2
an=2^n-1
的最大值为8a1/9
谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询