已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,

已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点A(... 已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点A(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程. 展开
 我来答
西瓜氁謁
推荐于2016-03-13 · 超过77用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:178万
展开全部
(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,
|M1M|
|M2M|
=5.
(x?26)2+(y?1)2
(x?2)2+(y?1)2
=5
,化简得x2+y2-2x-2y-23=0.
即(x-1)2+(y-1)2=25.
∴点M的轨迹方程是(x-1)2+(y-1)2=25,
所求轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,过点A(-2,3)的直线l:x=-2,
此时过点A(-2,3)的直线l被圆所截得的线段的长为:2
52?32
=8,
∴l:x=-2符合题意.
当直线l的斜率存在时,设过点A(-2,3)的直线l的方程为y-3=k(x+2),即kx-y+2k+3=0,
圆心到l的距离d=
|3k+2|
k2+1

由题意,得(
|3k+2|
k2+1
)2
+42=52,解得k=
5
12
.∴直线l的方程为
5
12
x-y+
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消