已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).(1)当t=5时,求函数g(x)图象过的定

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).(1)当t=5时,求函数g(x)图象过的定点;(2)当t=4,x∈[1,2],且... 已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).(1)当t=5时,求函数g(x)图象过的定点;(2)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;(3)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围. 展开
 我来答
祝念阳
推荐于2016-04-09 · TA获得超过701个赞
知道答主
回答量:130
采纳率:100%
帮助的人:55.4万
展开全部
解答:(本小题满分10分)
解:(1)当t=5时,g(x)=2loga(2x+3)(a>0,a≠1,t∈R),
∴g(x)图象必过定点(-1,0).…(1分)
(2)当t=4时,F(x)=g(x)?f(x)=2loga(2x+2)?logax=loga
(2x+2)2
x
=loga[4(x+
1
x
)+8]

当x∈[1,2]时,4(x+
1
x
)+8
∈[16,18],
若a>1,则F(x)min=loga16=2,解得a=4或a=-4(舍去);
若0<a<1,则F(x)min=loga18=2,解得a=3
2
(舍去).故a=4.…(5分)
(3)转化为二次函数在某区间上最值问题.由题意知,
1
2
logax≥loga(2x+t?2)
在x∈[1,2]时恒成立,
∵0<a<1,∴
x
≤2x+t?2
在x∈[1,2]时恒成立,…(7分)
t≥?2x+
x
+2=?2(
x
?
1
4
)2+
17
8
在x∈[1,2]时恒成立,∴t≥1.
故实数t的取值范围[1,+∞).     …(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式