已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)
已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程....
已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.
展开
展开全部
(1)∵P(2,4)在曲线y=
x3+
上,且y′=x2,
∴在点P(2,4)处的切线的斜率为k1=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0;
(2)设曲线y=
x3+
与过点P(2,4)的切线相切于点A(x0,
x03+
),
则切线的斜率k=x02,
∴切线方程为y-(
x03+
)=x02(x-x0),
∵点P(2,4)在切线上,
∴x03-3x02+4=0,
∴x03+x02-4x02+4=0,
∴(x0+1)(x0-2)2=0
解得x0=-1或x0=2
故所求的切线方程为4x-y-4=0或x-y+2=0.
(3)设切点为(x0,y0)
则切线的斜率为k=x02=1,x0=±1.切点为(1,
),(-1,1)
∴切线方程为y-1=x+1或y-
=x-1,即x-y+2=0或3x-3y+2=0.
1 |
3 |
4 |
3 |
∴在点P(2,4)处的切线的斜率为k1=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0;
(2)设曲线y=
1 |
3 |
4 |
3 |
1 |
3 |
4 |
3 |
则切线的斜率k=x02,
∴切线方程为y-(
1 |
3 |
4 |
3 |
∵点P(2,4)在切线上,
∴x03-3x02+4=0,
∴x03+x02-4x02+4=0,
∴(x0+1)(x0-2)2=0
解得x0=-1或x0=2
故所求的切线方程为4x-y-4=0或x-y+2=0.
(3)设切点为(x0,y0)
则切线的斜率为k=x02=1,x0=±1.切点为(1,
5 |
3 |
∴切线方程为y-1=x+1或y-
5 |
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询