在直角三角形ABC中,角C=90°,BE平分角ABC交AC与点E,点D在AB边上且DE⊥BE
在直角三角形ABC中,角C=90°,BE平分角ABC交AC与点E,点D在AB边上且DE⊥BE(1)判断直线AB与三角形DBE外接圆的关系,并说明理由(2)若AD=6,AE...
在直角三角形ABC中,角C=90°,BE平分角ABC交AC与点E,点D在AB边上且DE⊥BE
(1)判断直线AB与三角形DBE外接圆的关系,并说明理由
(2)若AD=6,AE=6根号2,求三角形DBE外接圆半径的长 展开
(1)判断直线AB与三角形DBE外接圆的关系,并说明理由
(2)若AD=6,AE=6根号2,求三角形DBE外接圆半径的长 展开
2个回答
展开全部
(1).相切
解:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
即∠OEB=∠CBE
∴OE//BC(内错角相等,两直线平行)
∵BC⊥AC
∴OE⊥AC
又∵OE是半径
∴E是切点,AC是圆O的切线。
(2).解:
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3
解:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
即∠OEB=∠CBE
∴OE//BC(内错角相等,两直线平行)
∵BC⊥AC
∴OE⊥AC
又∵OE是半径
∴E是切点,AC是圆O的切线。
(2).解:
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3
展开全部
(1).相切
解:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
即∠OEB=∠CBE
∴OE//BC(内错角相等,两直线平行)
∵BC⊥AC
∴OE⊥AC
又∵OE是半径
∴E是切点,AC是圆O的切线。
(2).解:
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3
解:设BD中点为O,连接OE
∵E和B都是圆上的点
∴OE=OB
∴∠OEB=∠OBE
又∵BE平分∠ABC
∴∠OBE=∠CBE
即∠OEB=∠CBE
∴OE//BC(内错角相等,两直线平行)
∵BC⊥AC
∴OE⊥AC
又∵OE是半径
∴E是切点,AC是圆O的切线。
(2).解:
∵AC是圆O的切线
∴∠AED=∠ABE(弦切角定理)
在△AED和△ABE中:
∵∠A=∠A,∠AED=∠ABE
∴△AED∽△ABE
∴AE/AB=AD/AE
即AB*AD=AE²
∴AB=AE²÷AD=12
∴直径BD=AB-AD=6
∴外接圆的半径长3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询