如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F分别是OB、OD的中点。
如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F分别是OB、OD的中点。过点O任作一直线分别交AB、CD于点G、H。求证:GF平行EH.第一个回答滴∴△AB...
如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F分别是OB、OD的中点。过点O任作一直线分别交AB、CD于点G、H。求证:GF平行EH.
第一个回答滴 ∴△ABO≌△COD(ASA)
∴GO=HO(全等三角形对应边相等)
go=ho怎么弄出来滴啊。。
相似三角形还没有学 展开
第一个回答滴 ∴△ABO≌△COD(ASA)
∴GO=HO(全等三角形对应边相等)
go=ho怎么弄出来滴啊。。
相似三角形还没有学 展开
展开全部
GO=HO是因为BG=DH,因为ABCD是平行四边形,所以AB=CD,所以AG=CH,所以证明三角形AGO与三角形HCO全等,就可以得出了,希望我能帮到你,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵平行四边形ABCD
∴AD‖AC且∠ABC=∠ADC
∴∠ADB=∠DBC
∴∠ABC-∠DBC=∠ADC-∠ADB(∠ABD=∠BDC)
∵在△ABO与△COD中
∠AOB=∠COD(对顶角相等) BO=DO(已证) ∠ABD=∠BDC(已证)
∴△ABO≌△COD(ASA)
∴GO=HO(全等三角形对应边相等)
∵点E、F分别是OB、OD的中点
∴EO=FO
∵在△GFO与△HEO中
GO=HO(已证) ∠GOF=∠HOE(对顶角相等) EO=FO(已证)
∴△GFO≌△HEO(SAS)
∴∠GFO=∠HEO(全等三角形对应角相等)
∴GF‖EH(内错角相等,两直线平行)
∴AD‖AC且∠ABC=∠ADC
∴∠ADB=∠DBC
∴∠ABC-∠DBC=∠ADC-∠ADB(∠ABD=∠BDC)
∵在△ABO与△COD中
∠AOB=∠COD(对顶角相等) BO=DO(已证) ∠ABD=∠BDC(已证)
∴△ABO≌△COD(ASA)
∴GO=HO(全等三角形对应边相等)
∵点E、F分别是OB、OD的中点
∴EO=FO
∵在△GFO与△HEO中
GO=HO(已证) ∠GOF=∠HOE(对顶角相等) EO=FO(已证)
∴△GFO≌△HEO(SAS)
∴∠GFO=∠HEO(全等三角形对应角相等)
∴GF‖EH(内错角相等,两直线平行)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询