求洛必达法则推导过程。
1个回答
展开全部
关于问题“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→a时lim f'(x)/F'(x)=A(或为无穷大),同样适用于x→0”,
如果说,同样,成立“当x→0时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句明显是对的;
如果说,同样,成立“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句就是错的.
关于把结论写成“x→a时 lim f'(x)/F'(x)=A”的问题,如果要这样写,应该写成“x→a时 lim f'(x)/碧嫌F'(x)=A(或为无穷大)”是对的悔仿手.其实在这种写法中,暗含着:“函数比的极限为某个数或无穷时,导函数之比的极限同样”的意思,所以洛必达法则的结论也写成“x→a时 lim f'(x)/F'(x)=x→0时 lim f(x)/F(x)”.两种写法只是形式不同,本质是相同的,即函数比的极限为某个数或无穷时,导函数之比的极限同样”.
关于洛必达法则的推大枝导依据,在大一高等数学课程中有.
如果说,同样,成立“当x→0时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句明显是对的;
如果说,同样,成立“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句就是错的.
关于把结论写成“x→a时 lim f'(x)/F'(x)=A”的问题,如果要这样写,应该写成“x→a时 lim f'(x)/碧嫌F'(x)=A(或为无穷大)”是对的悔仿手.其实在这种写法中,暗含着:“函数比的极限为某个数或无穷时,导函数之比的极限同样”的意思,所以洛必达法则的结论也写成“x→a时 lim f'(x)/F'(x)=x→0时 lim f(x)/F(x)”.两种写法只是形式不同,本质是相同的,即函数比的极限为某个数或无穷时,导函数之比的极限同样”.
关于洛必达法则的推大枝导依据,在大一高等数学课程中有.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询