洛必达法则怎么证明呢?

趴着百科全书
高粉答主

2019-07-08 · 别趴着看百科全书啦!
趴着百科全书
采纳数:56 获赞数:37682

向TA提问 私信TA
展开全部

证明中,在x和一个接近a的值b之间利用柯西中值定理就是合理的,然后再让b和x同时趋向a。

两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。

具体如图:

扩展资料:

应用条件

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则

参考资料来源:百度百科-洛必达法则

教育小百科达人
2019-04-10 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

具体回答如图:

证明中,在x和一个接近a的值b之间利用柯西中值定理就是合理的,然后再让b和x同时趋向a。

两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。

扩展资料:

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。

参考资料来源:百度百科——洛必达法则

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
高粉答主

2019-07-18 · 关注我不会让你失望
知道小有建树答主
回答量:1346
采纳率:100%
帮助的人:34.5万
展开全部

运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

扩展资料

注意事项:

求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限 。

⑴ 在着手求极限以前,首先要检查是否满足

型构型,否则滥用洛必达法则会出错(其实

形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括

情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解 。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等 。

参考资料:百度百科-洛必达法则

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
iStudioX
2014-06-05
知道答主
回答量:15
采纳率:0%
帮助的人:8.3万
展开全部

网上搜一下就有了,下面的描述摘自维基百科:

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式