星形线参数方程t的范围

星形线参数方程t的范围... 星形线参数方程t的范围 展开
 我来答
轮看殊O
高粉答主

2019-09-21 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:742万
展开全部

1、函数y=f(x)的增减性与x=φ(t)及y=ψ(t)随t的增减性是两回事。

2、无需考率x与y随参数t的增减性;

3、x=acos³t,在0≦t≦π时x随t单调减;在π≦t≦2π时x随t单调增;

y=asin³t,在0≦t≦π/2及3π/2≦t≦2π时y随t单调增;在π/2≦t≦3π/2时y随t单调增。

扩展资料:

在实数平面上有四个尖瓣的奇点,分别是星形线的四个顶点,在无限远处还有二个复数的尖瓣的奇点,四个重根的复数奇点,因此星形线共有十个奇点。

若星形线上某一点切线为T,则其斜率为tan(p),其中p为极坐标中的参数。相应的切线方程为T: x*sin(p)+y*cos(p)=a*sin(2p)/2 。

如果切线T分别交x、y轴于点x(X,0)、y(0,Y),则线段xy恒为常数,且为a。

爽快还舒适的小抹香鲸j
2017-06-10 · TA获得超过387个赞
知道小有建树答主
回答量:348
采纳率:80%
帮助的人:36.4万
展开全部
星形线的直角坐标方程
x^(2/3)+y^(2/3)=a^(2/3)
这个容易类比到圆的方程
[x^(1/3)]^2+[y^(1/3)]^2=[a^(1/3)]^2
所以参数方程写为x^(1/3)=a^(1/3)*cost
y^(1/3)=a^(1/3)*sint
即x=a*(cost)^3
,y=a*(sint)^3
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式