∫x√(2x-x∧2)dx
2个回答
展开全部
令x-1=sinu,则x=1+sinu,u=arcsin(x-1)
∫x√(2x-x²)dx
=∫x√[1-(x-1)²]d(x-1)
=∫(1+sinu)√(1-sin²u)d(sinu)
=∫(1+sinu)·cos²udu
=½∫(1+cos2u)du-∫cos²ud(cosu)
=½u+½sinucosu-⅓cos³u+C
=½arcsin(x-1)+½(x-1)√(2x-x²)-⅓(2x-x²)√(2x-x²)+C
=(1/6)[(2x²-x-3)√(2x-x²)+3arcsin(x-1)]+C
∫x√(2x-x²)dx
=∫x√[1-(x-1)²]d(x-1)
=∫(1+sinu)√(1-sin²u)d(sinu)
=∫(1+sinu)·cos²udu
=½∫(1+cos2u)du-∫cos²ud(cosu)
=½u+½sinucosu-⅓cos³u+C
=½arcsin(x-1)+½(x-1)√(2x-x²)-⅓(2x-x²)√(2x-x²)+C
=(1/6)[(2x²-x-3)√(2x-x²)+3arcsin(x-1)]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询