展开全部
令t=1/x,则dx=-dt/t^2
∫(0,+∞) x^2/(1+x^4)dx
=∫(+∞,0) (1/t^2)/(1+1/t^4)*(-dt/t^2)
=∫(0,+∞) 1/(1+t^4)dt
=∫(0,+∞) 1/(1+x^4)dx
所以原式=(1/2)*∫(0,+∞) (x^2+1)/(1+x^4)dx
=(1/2)*∫(0,+∞) (1+1/x^2)/(x^2+1/x^2)dx
=(1/2)*∫(0,+∞) d(x-1/x)/[(x-1/x)^2+2]
=(1/2√2)*arctan[(x-1/x)/√2]|(0,+∞)
=(√2/4)*(π/2+π/2)
=(π√2)/4
∫(0,+∞) x^2/(1+x^4)dx
=∫(+∞,0) (1/t^2)/(1+1/t^4)*(-dt/t^2)
=∫(0,+∞) 1/(1+t^4)dt
=∫(0,+∞) 1/(1+x^4)dx
所以原式=(1/2)*∫(0,+∞) (x^2+1)/(1+x^4)dx
=(1/2)*∫(0,+∞) (1+1/x^2)/(x^2+1/x^2)dx
=(1/2)*∫(0,+∞) d(x-1/x)/[(x-1/x)^2+2]
=(1/2√2)*arctan[(x-1/x)/√2]|(0,+∞)
=(√2/4)*(π/2+π/2)
=(π√2)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询