权数是什么?
权数是在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值。变量数列中各组标志值出现的次数,是变量值的承担者,反映了各组的标志值对平均数的影响程度。
1.权数决定指标的结构,权数如变动,绝对指标值和平均数也变动,所以权数是影响指标数值变动的一个重要因素。权数一般有两种表现形式:一是绝对数(频数)表示,另一个是用相对数(频率)表示。相对数是用绝对数计算出来的百分数(%)或千分数(‰)表示的,又称比重。平均数的大小不仅取决于总体中各单位的标志值(变量值)的大小,这说明权数的权衡轻重作用,是体现在各组单位数占总体单位数的比重大小上。
2.权数的作用
权数的权衡轻重作用是体现在各组单位数占总体单位数的比重大小上,在计算平均数和指数上得到广泛的应用。如,工业生产指数中的权数是对产品的个体指数在生产指数形成过程中的重要性进行界定的指标。零售物价指数除选用代表规格品计算个体物价指标外,还要采用零售额为权数。居民消费价格指数的权数来源于居民用于各类商品和服务项目的消费支出额以及各种商品、服务项目的实际消费支出额的构成比重,在居民消费价格指数的形成中起着权衡轻重的作用。
2023-06-12 广告
权数一般有两种表现形式,一是绝对数(频数)表示,另一个是用相对数(频率)表示,相对数是用绝对数计算出来的百分数(%)表示的,又称比重。
平均数的大小不仅取决于总体中各单位的标志值(变量值)的大小,而且取决于各标志值出现的次数(频数),由于各标志值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。
在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。权数决定指标的结构,权数如变动,绝对指标值和平均数也变动,所以权数是影响指标数值变动的一个重要因素。
扩展资料
平均指标的种类及计算方法
数值平均数:算术平均数、调和平均数、几何平均数。
算术平均数适用于总体资料未经分组整理、尚为原始资料的情况。
调和平均数是总体各单位标志值倒数的算术平均数的倒数,又叫倒数平均数。简单调和平均数适用于总体资料未经分组整理、尚为原始资料的情况;加权调和平均数适用于总体资料经过分组整理形成变量数列的情况。
几何平均数适用于计算现象的平均比率或平均速度。简单几何平均数适用于总体资料未经分组整理尚为原始资料的情况;加权几何平均数适用于总体资料经过分组整理形成变量数列的情况。
参考资料来源:百度百科-权数
1、各个数字的个数分别表示为:k1,k2,k3…….kn;
加权平均的公式是:(k1p1+k2p2+……knpn)/(k1+k2+......kn)。
2、给出一组数据,其中3出现6次,4出现3次,2出现1次。6、3、1就叫权数。这种方法叫加权法。一般说的平均数,就是把所有的数加起来,再除以这些数的总个数。
表示为:(p1+p2+p3+…..+pn)/n。但有的数据记录中有一些相同的数据,在计算的时候,那一个数有几个相同数,就把这个数乘上几,这个几,就叫权,加权,就是乘上几后再加。平均数还是要除以总个数。
扩展资料:
普通测量中的定权
同精度丈量时,边长的权与边长成反比。
当每公里水准测量的精度相同时,水准路线观测高差的权与路线长度成反比。
当各测站观测高差的精度相同时,水准路线观测高差的权与测站数成反比。
由不同个数的同精度观测值求得得算术平均值,其权与观测值个数成正比。
参考资料来源:百度百科-加权
在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。权数决定指标的结构,权数如变动,绝对指标值和平均数也变动,所以权数是影响指标数值变动的一个重要因素。权数一般有两种表现形式:一是绝对数(频数)表示,另一个是用相对数(频率)表示。相对数是用绝对数计算出来的百分数(%)或千分数(‰)表示的,又称比重。平均数的大小不仅取决于总体中各单位的标志值(变量值)的大小,而且取决于各标志值出现的次数(频数),由于各标志值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。这说明权数的权衡轻重作用,是体现在各组单位数占总体单位数的比重大小上。如工业生产指数中的权数是对产品的个体指数在生产指数形成过程中的重要性进行界定的指标。产品的重要性不同,在发展速度中的作用不同,产品或行业占比重大的,权数就大,在指数中的作用就大。工业经济效益综合指数中的权数是根据各项指标在综合经济效益中的重要程度确定的。(参阅第38题)零售物价指数除选用代表规格品计算个体物价指数外,还要采用零售额为权数,对个体商品物价指数在物价总指数形成中的重要程度起着权衡轻重的作用。
正确理解统计中的权数
在统计中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。权数的总和一般为100或1000,现假设一个算例加以说明。
平均报酬:按不加权计算(800+600+400)÷ 3 = 600元
按加权计算:
按从业人员数加权(800×50+600×250+400×200)÷ 500 = 540元
按各组从业人员占从业人员总人数比重加权 800×10%+600×50%+400×40% =540元
从上例看,按不加权计算把不同报酬水平对总体平均报酬的影响等同起来,是不符合实际情况的。按加权方法计算考虑了不同报酬水平的人数(或比重)不同,对总体平均数的影响不同,计算结果表明600元的占50%对平均报酬影响最大,其次是400元的占40%,800元的占10%影响最小,因而平均报酬540元,是符合实际情况的。
从理论上讲,权数决定指标的结构,权数如变动,绝对指标值和平均数也变动,所以权数是影响指标数值变动的一个重要因素。权数一般有两种表现形式,一是绝对数(频数)表示,另一个是用相对数(频率)表示,相对数是用绝对数计算出来的百分数(%)表示的,又称比重。平均数的大小不仅取决于总体中各单位的标志值(变量值)的大小,而且取决于各标志值出现的次数(频数),由于各标志值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。
权数的权衡轻重作用是体现在各组单位数占总体单位数的比重大小上,在计算平均数和指数上得到广泛的应用。如,工业生产指数中的权数是对产品的个体指数在生产指数形成过程中的重要性进行界定的指标。零售物价指数除选用代表规格品计算个体物价指标外,还要采用零售额为权数。居民消费价格指数的权数来源于居民用于各类商品和服务项目的消费支出额以及各种商品、服务项目的实际消费支出额的构成比重,在居民消费价格指数的形成中起着权衡轻重的作用。