∫x²/√1-x²×dx求解题过程

 我来答
匿名用户

2019-10-11
展开全部
你给的题干不全,计算步骤参考下面的
答案是√2 - 2/√3

解题过程如下:

∫[1→√3] 1/[x²√(1+x²)] dx

令x=tanu,则√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du

=∫[π/4→π/3] cosu/sin²u du

=∫[π/4→π/3] 1/sin²u dsinu

=-1/sinu ||[π/4→π/3]

=√2 - 2/√3

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
tllau38
高粉答主

2019-10-11 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
let
x=sinu
dx=cosu du
∫ [ x^2/√(1-x^2) ]dx
=∫ (sinu)^2 du

=(1/2) ∫ (1-cos2u) du
=(1/2)[ u -(1/2)sin2u] +C
=(1/2)[ arcsinx -x.√(1-x^2) ] +C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式