等比数列及其前n项和
3个回答
展开全部
Sn=[a1*(1-q^n)]/(1-q)为等比数列而这里n为未知数可以写成F(n)=[a1*(1-q^n)]/(1-q)当q=1时为常数列也就是n个a1相加为n*a1。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
注:q=1时,an为常数列。即a^n=a。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
注:q=1时,an为常数列。即a^n=a。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。
展开全部
解:由等比数列可得
a1=1,a4=1x(q)^(4-1)=1/8
解:q=1/2
所以首项为1,公比为1/2的等比数列,
sn=(1-1/2^n)/(1-1/2)
所以带入sn公式可得sn=[1(1-1/2^10)]/(1-1/2)=2-1/512=1023/512
a1=1,a4=1x(q)^(4-1)=1/8
解:q=1/2
所以首项为1,公比为1/2的等比数列,
sn=(1-1/2^n)/(1-1/2)
所以带入sn公式可得sn=[1(1-1/2^10)]/(1-1/2)=2-1/512=1023/512
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询