在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
1个回答
展开全部
第一个首先简单吧,三角形CDE和三角形CDF全等不难吧。
连接EF
第二个成立要用到全等中角ECD和角FCD相等
又因为角GCE=45°得到CFE为RT直角三角形,且CG为角平分线,这样就可以得出三角形CGE和三角形CGF全等,这样EG=GF了
GF=DF+GD,所以GE=BE+GD
延长AD到H.使CH垂直于AH,得到正方形ABCH
由前面结论可得,
DE=DH+BE.S△BCE+S△ECD+S△DCH+S△ADE=S□ABCH=12*12=144
∵S△ECD=S△BCE+S△DCH.
∴S△ADE+2S△ECD=144
设DH=x
,则1/2(12-x)*8+2*1/2*12*(4+x)=144解得x=6.
故DE=4+6=10
连接EF
第二个成立要用到全等中角ECD和角FCD相等
又因为角GCE=45°得到CFE为RT直角三角形,且CG为角平分线,这样就可以得出三角形CGE和三角形CGF全等,这样EG=GF了
GF=DF+GD,所以GE=BE+GD
延长AD到H.使CH垂直于AH,得到正方形ABCH
由前面结论可得,
DE=DH+BE.S△BCE+S△ECD+S△DCH+S△ADE=S□ABCH=12*12=144
∵S△ECD=S△BCE+S△DCH.
∴S△ADE+2S△ECD=144
设DH=x
,则1/2(12-x)*8+2*1/2*12*(4+x)=144解得x=6.
故DE=4+6=10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询