三角形ABC中,a b c是其对边,已知:a+c=2b A-C=三分之派,求sinB
2个回答
展开全部
解:因a+c=2b,故由正弦定理有:sinA+sinC=2sinB
sinA+sinC=2[sin(A+C)/2]cos(A-C)/2
=2[sin(180-B)/2]*cos30°
=2sin(90-B/2)*√3/2
=(√3)cosB/2
故,2sinB=(√3)cosB/2
2*2sinB/2*cosB/2=(√3)cosB/2,因cosB/2<>0
故sinB/2=(√3)/4
又,sinB/2=±√[(1-cosB)/2]
cosB=1-2sin^2(B/2)=1-2*3/16=5/8
故,sinB=√(1-cos²
B)=√[1-(5/8)²
]=√39/8
sinA+sinC=2[sin(A+C)/2]cos(A-C)/2
=2[sin(180-B)/2]*cos30°
=2sin(90-B/2)*√3/2
=(√3)cosB/2
故,2sinB=(√3)cosB/2
2*2sinB/2*cosB/2=(√3)cosB/2,因cosB/2<>0
故sinB/2=(√3)/4
又,sinB/2=±√[(1-cosB)/2]
cosB=1-2sin^2(B/2)=1-2*3/16=5/8
故,sinB=√(1-cos²
B)=√[1-(5/8)²
]=√39/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询