过点(3,1)作圆(x-2)²+(y-2)²=4的弦,其中最短弦所在的直线方程为?

 我来答
类素花皇珍
2020-03-14 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:26%
帮助的人:954万
展开全部
答:
圆心(2,2),半径R=2
点(3,1)在圆内部
当点(3,1)是弦中点时,该弦最短
弦心距d=√
[
(3-2)²+(1-2)²
]=√2
根据勾股定理:
半弦长=√
[R²-d²)=√(4-2)=√2
弦长=2√2
最短弦长为2√2
点(3,1)和(2,2)连线斜率k=(2-1)/(2-3)=-1
最短线直线斜率k1=1
弦所在直线为:y-1=x-3
即为:y=x-2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式