高等数学。。数学题。。请高手解答啊。。谢谢 5
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0解题答案:中。。有一段即f(...
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
解题答案:
中。。有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的??求过程
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。。
这个结论。。。
我见有些题。。Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。。。可以这样用。。
有些题。。这样用会被说是错的。。。请问为什么啊? 展开
使f(ζ)=0
解题答案:
中。。有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的??求过程
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。。
这个结论。。。
我见有些题。。Limf(x)/g(x)=A→Limf’(x)/g’(x)=A。。。可以这样用。。
有些题。。这样用会被说是错的。。。请问为什么啊? 展开
3个回答
展开全部
既然有答案原题我就不做了,直接说你问的吧:
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
-----------------------
因为f(x)在[0,1]上连续可微,f(x)=f(0)+f'(0)x+o(x)=f'(0)x+o(x)
f(1-x)=f(1)-f'(1)(1-x)+o(x)=-f'(1)(1-x)+o(x) (x->0)
于是f(x)*f(1-x)=-x(1-x)f'(0)f'(1)+o(x)<0 (x->0)
于是存在ζ∈(x,1-x)属于(0,1)使得f(ζ)=0
========================
∫(0->1)ln(1+x^2)dx=ln2-2(1-4/π)
这个积分算错了吧……
------------
∫(0->1)ln(1+x^2)dx
= xln(1+x^2)|(0->1)-∫(0->1)x/(1+x^2)dx <-注意这里第二项积分里面分子上的x可能被落掉了,才得到了上述错误答案
=ln2-1/2*ln(1+x^2)|(0->1)
=ln2-ln2/2
=ln2/2
==========================
这是因为Limf’(x)/g’(x)不一定存在
比如f(x)=x+1,g(x)=x^2+1,则
Lim(x->0)f(x)/g(x)=1但是Lim(x->0)f'(x)/g'(x)=∞
如果Limf’(x)/g’(x)存在那么Limf(x)/g(x)=A→Limf’(x)/g’(x)=A
有些题直接用了可能是因为Limf’(x)/g’(x)的存在性比较显然。
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
-----------------------
因为f(x)在[0,1]上连续可微,f(x)=f(0)+f'(0)x+o(x)=f'(0)x+o(x)
f(1-x)=f(1)-f'(1)(1-x)+o(x)=-f'(1)(1-x)+o(x) (x->0)
于是f(x)*f(1-x)=-x(1-x)f'(0)f'(1)+o(x)<0 (x->0)
于是存在ζ∈(x,1-x)属于(0,1)使得f(ζ)=0
========================
∫(0->1)ln(1+x^2)dx=ln2-2(1-4/π)
这个积分算错了吧……
------------
∫(0->1)ln(1+x^2)dx
= xln(1+x^2)|(0->1)-∫(0->1)x/(1+x^2)dx <-注意这里第二项积分里面分子上的x可能被落掉了,才得到了上述错误答案
=ln2-1/2*ln(1+x^2)|(0->1)
=ln2-ln2/2
=ln2/2
==========================
这是因为Limf’(x)/g’(x)不一定存在
比如f(x)=x+1,g(x)=x^2+1,则
Lim(x->0)f(x)/g(x)=1但是Lim(x->0)f'(x)/g'(x)=∞
如果Limf’(x)/g’(x)存在那么Limf(x)/g(x)=A→Limf’(x)/g’(x)=A
有些题直接用了可能是因为Limf’(x)/g’(x)的存在性比较显然。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询