当x趋于0的时候,为什么说lim[3sinx+x^2cos(1/x)]'/x'的极限不存在? 我来答 1个回答 #热议# 上班途中天气原因受伤算工伤吗? 连冉家谷之 2020-07-09 · TA获得超过1191个赞 知道小有建树答主 回答量:1919 采纳率:92% 帮助的人:13.7万 我也去答题访问个人页 关注 展开全部 原式是0比0型,按照洛比达法则,对分子和分母同时求导得 =lim[3cosx+2x·cos(1/x) + x²·(-sin(1/x)·(-1/x²) ) ] / 1 =lim[ 3cosx+2x·cos(1/x) + sin(1/x) ] 其中3cosx→3;2x·cos(1/x)→0; 而由于1/x→∞,则sin(1/x)的极限不存在,它在-1与1之间振荡. 因此原极限就不满足极限存在的条件,故不存在. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-21 x趋近于0时,lim(3sinx+x^2 cos1/x)/【(1+cosx)ln(1+x)】求极限 3 2022-08-25 lim(1+3six)^cotx,当x趋向于0时,求极限 2022-09-03 当x趋近于0时,lim(3sinx+x^2 cos1/x)'/x的极限为什么不存在?' 2022-07-16 求极限lim(x趋于0)(x-xcosx)/(x-sinx) 2022-07-04 lim趋现于0,x(x+3)/sinx 2022-06-14 x趋于0求极限lim2½-(1+cosx)½/(sin3x)^2 2021-11-01 limx趋于0[(sinx)/x]^1/x^2? 2022-07-31 求极限: limx趋向于0, √(1+x^2)-1/xsin3x 为你推荐: