3个回答
展开全部
let
u= y/x
du/dx = (1/x).dy/dx - (1/x^2)y
= (1/x).dy/dx - (u/x)
x.du/dx = dy/dx - u
dy/dx = u+x.du/dx
y' = (1/x)y + tan(y/x)
u+x.du/dx = u + tanu
x.du/dx = tanu
∫cotu.du =∫dx/x
ln|sinu| = ln|x| + C'
sinu = Cx
sin(y/x) = Cx
y = x.arcsin(Cx)
u= y/x
du/dx = (1/x).dy/dx - (1/x^2)y
= (1/x).dy/dx - (u/x)
x.du/dx = dy/dx - u
dy/dx = u+x.du/dx
y' = (1/x)y + tan(y/x)
u+x.du/dx = u + tanu
x.du/dx = tanu
∫cotu.du =∫dx/x
ln|sinu| = ln|x| + C'
sinu = Cx
sin(y/x) = Cx
y = x.arcsin(Cx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询