正交矩阵的特征值一定是1或-1吗?
3个回答
展开全部
是。
(λα,λα) = (Aα,Aα) = (Aα)^T(Aα) = α^TA^TAα
= α^Tα = (α,α).
所以有 λ^2(α,α) = (α,α).
又因为 α≠0, 所以 (α,α)>0.
所以 λ^2 = 1.
所以 λ = ±1.
即正交矩阵的特征值只能是1或-1。
如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。
正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询