一道很难的奥数题。
记S=(1×2×3×…×n)+(4k+3),这里n≥3。当k在1至100之间取正整数值时,有多少个不同的k,使得S是一个正整数的平方。(请写出解答过程)。...
记S=(1×2×3×…×n)+(4k+3),这里n≥3。当k在1至100之间取正整数值时,有多少个不同的k,使得S是一个正整数的平方。(请写出解答过程)。
展开
1个回答
展开全部
任何正整数数不是奇数就是偶数,也就是正整数可以表示为
{Z | Z = 2T 或 Z = 2T - 1 (T属于正整数)}
因此Z的平方
Z^2 = (2T)^2 = 4*T^2
或
Z^2 = (2T - 1)^2 = 4*T^2 - 4T + 1 = 4(T^2 - 1) + 1
即有:任何正整数的平方数被4除的余数仅有0、1这两种。
对S = N! + (4K + 3)来说
当N≥4时,N!必能被4整除(因含因数4),S必为被4除余3的数,根据上面推导,S必不可能为某一正整数的平方。
因此仅存N = 3的情况。当N = 3时,
S = 1×2×3 + 4K + 3 = 9 + 4K
1 ≤ K ≤ 100
13 ≤ S ≤ 409
在此范围内的完全平方数有4^2 = 16、5^2 = 25……、20^2 = 400
这 20 - 4 + 1 = 17 个。按这些平方数求出K 即可。
{Z | Z = 2T 或 Z = 2T - 1 (T属于正整数)}
因此Z的平方
Z^2 = (2T)^2 = 4*T^2
或
Z^2 = (2T - 1)^2 = 4*T^2 - 4T + 1 = 4(T^2 - 1) + 1
即有:任何正整数的平方数被4除的余数仅有0、1这两种。
对S = N! + (4K + 3)来说
当N≥4时,N!必能被4整除(因含因数4),S必为被4除余3的数,根据上面推导,S必不可能为某一正整数的平方。
因此仅存N = 3的情况。当N = 3时,
S = 1×2×3 + 4K + 3 = 9 + 4K
1 ≤ K ≤ 100
13 ≤ S ≤ 409
在此范围内的完全平方数有4^2 = 16、5^2 = 25……、20^2 = 400
这 20 - 4 + 1 = 17 个。按这些平方数求出K 即可。
瑞达小美
2024-11-27 广告
2024-11-27 广告
作为北京瑞达成泰教育科技有限公司的工作人员,对于法考有着深入了解。法考主观题主要包括案例分析题、法律文书题和论述题三种题型。其中,案例分析题是占比最大、难度较高的题型,涉及刑法、民法、行政法等多个法律领域。法律文书题要求考生撰写符合法律规定...
点击进入详情页
本回答由瑞达小美提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |