如下所示:
方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1·X2=c/a(也称韦达定理) 方程两根为x1,x2时,方程为:x2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)。
则有:
韦达定理的意义:
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。