求x乘以根号下(x的平方减一)的积分
展开全部
替换x=sec t, tan t= 根号(sec^2 t-1)=根号(x^2-1)
dx=sec t tan t
积分=积分sect * 根号(sec^2 t-1) sect tan t dt
=积分sect * 根号(tan^2 t) sect tan t dt
=积分sect * tan t sect tan t dt
=积分sec^2 t * tan^2 t dt
=积分tan^2 t d(tan t)
=1/3*tan^3 t +C
=1/3*[根号(x^2-1)]^3 +C
dx=sec t tan t
积分=积分sect * 根号(sec^2 t-1) sect tan t dt
=积分sect * 根号(tan^2 t) sect tan t dt
=积分sect * tan t sect tan t dt
=积分sec^2 t * tan^2 t dt
=积分tan^2 t d(tan t)
=1/3*tan^3 t +C
=1/3*[根号(x^2-1)]^3 +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询