一个实数的复数次方怎么算来着?
利用欧拉公式:
e^x=5→x=ln5;
所以:
e^(ix)=(e^x)^i=5^i=cos(ln5)+i*sin(ln5)
5^(3+i)=125*5^i
=125*(cos(ln5)+i*sin(ln5))
=125cos(ln5)+i*125*sin(ln5)
扩展资料:
欧拉公式证明
用数学归纳法证明
( 1)当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。
( 2)设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。
由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了;
在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点 ,则 该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 ,则去掉 该顶点 ,该顶点两边的两条边界便成为一条边界 。于 是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种 情况:
①减少一个区域和一条边界;
②减少一个区 域、一个顶点和两条边界;
③减少一个区域、两个顶 点和三条边界;
即在去掉 X 和 Y 之间的边界时 ,不 论何种情况都必定有“减少的区域数 + 减少的顶点数 = 减少的边界数”我们将上述过程反过来 (即将 X 和 Y之间去掉的边 界又照原样画上 ) ,就又成为 R= m+ 1的地图了 ,在 这一过程中必然是“增加的区域数 + 增加的顶点数 = 增加的边界数”。
因此 ,若 R= m (m≥2)时欧拉定理成立 ,则 R= m+ 1时欧拉定理也成立.。
由 ( 1)和 ( 2)可知 ,对于任何正整数 R≥2,欧拉 定理成立。
参考资料:百度百科-欧拉公式