如何求解一个齐次线性方程组的解?

 我来答
教育小百科达人
2023-01-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:470万
展开全部

设齐次线性方程组AX=0

将A用初等行变换化成行简化梯矩阵、比如

1 2 0 3 4

0 0 1 5 6

0 0 0 0 0

0 0 0 0 0

则非零行的首非零元所在列对应的就是约束变量,例中为 x1,x3。

其余变量即为自由变量,例中为 x2,x4,x5。



扩展资料:

对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。

当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。

但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式