n+1个n维向量线性相关么?为什么
展开全部
以n+1个n维向量作为列向量构成的矩阵的秩不超过n(矩阵的秩不超过其行数和列数中小的那个);所以 r(A)<=n;所以 A 的列向量组的秩 <= n,即 n+1个n维向量 的秩 <=n,故线性相关。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 ,反之称为线性相关。
扩展资料
注意:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】
6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】
7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询