设a,b,c为不等于1的正数,且a^x=b^y=c^z,xy+yz+xz=0,求abc

 我来答
大沈他次苹0B
2022-07-30 · TA获得超过7322个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:177万
展开全部
设a^x=b^y=c^z=k
则loga(k)=x,logb(k)=y,logc(k)=z
又因为xy+yz+xz=0则:
loga(k)*logb(k)+logb(k)*logc(k)+loga(k)*logc(k)=0(1)
把(1)式变形
1/logk(a)*1/logk(b)+1/logk(b)*1/logk(c)+1/logk(a)*1/logk(c)=0
即1/logk(a+b)+1/logk(b+c)+1/logk(a+c)=0(2)
要使(2)式成立
即:a+b=1
b+c=1
a+c=1
a=1/2,b=1/2,c=1/2
abc=1/8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式