极大无关组是怎么求出来的?

 我来答
帐号已注销
2022-12-24 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:163万
展开全部

把这个向量组化为行最简形即阶梯矩阵,找到每列非零元素即可,例如:

a1  a2  a3  a4 

1    0    1     0

0    1    1     0

0    0    0     1

0    0    0     0

极大线性无关组即为:a1,a2,a4;a2,a3,a4;a1,a3,a4;a1,a2,a3不是极大无关组。

将向量组成的矩阵做线性行变换(行与行之间不交换),变成台阶状,全部消成0的行不要,剩下的对应就是极大无关组。

极大线性无关组就是对矩阵进行行列变换 可以得到的单位矩阵。

对角线上为1的就是极大线性无关组的线性无关列向量。

为0的就是可以以极大线性无关组表示出来的列向量 大致就是这样。

扩展资料:

设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。V中子集的极大线性无关组不是惟一的,例如,V的基都是V的极大线性无关组。它们所含的向量个数(基数)相同。

V的子集S的极大线性无关组所含向量的个数(基数),称为S的秩。只含零向量的子集的秩是零。V的任一子集都与它的极大线性无关组等价。特别地,当S等于V且V是有限维线性空间时,S的秩就是V的维数。

参考资料来源:百度百科-极大无关组

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式