∫(0, x) f(t) dt的积分公式

 我来答
热点那些事儿
高粉答主

2023-07-30 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:207万
展开全部

[∫(0x)(x-t)f(t)dt]'

=[∫(0,x)xf(t)dt-∫(0,x)tf(t)dt]'

=[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]'

=∫(0,x)f(t)dt+x[∫(0,x)f(t)dt]'-[∫(0,x)tf(t)dt]'

=∫(0,x)f(t)dt+xf(x)-xf(x)

=∫(0,x)f(t)dt

扩展资料:

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

闲彩飞情手1G
2023-07-30 · 贡献了超过284个回答
知道答主
回答量:284
采纳率:0%
帮助的人:5万
展开全部
=∫(0,x)f(t)dt[∫(0x)(x-t)f(t)dt]'=[∫(0,x)xf(t)dt-∫(0,x)tf(t)dt]'=[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]'=∫(0,x)f(t)dt+x[∫(0,x)f(t)dt]'-[∫(0,x)tf(t)dt]'=∫(0,x)f(t)dt+xf(x)-xf(x)=∫(0,x)f(t)dt导数是函数的局部性质一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线弊培性山卜模逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导逗缓数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一《hbrunyu.cn/news/3407.wsm》
《xsnsp.cn/news/3584.wsm》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式