若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f(x/y0=f(x)-f(y).求f(1)的值.
若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f(x/y0=f(x)-f(y).求f(1)的值.:若f(6)=1,解不等式f(x+3)-f(1/x)<...
若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f(x/y0=f(x)-f(y).求f(1)的值.
:若f(6)=1,解不等式f(x+3)-f(1/x)<-2
f(x)是定义在0到正无穷上的增函数,且对一切x,y>0,满足f(x/y)=f(x)-f(y)
令x=y=1
f(1)=f(1)-f(1)=0
f(1)=0
f(6)=1
令x=36,y=6
f(36/6)=f(36)-f(6)
f(6)=f(36)-f(6)
2f(6)=f(36)
f(36)=2
f(x+3)-f(1/3)<2
对一切x,y>0,满足f(x/y)=f(x)-f(y)
f[(x+3)/(1/3)]<2=f(36)--------------------------------为什么f(x+3)是f(x)而f(1/3)是f(y)
f(3x+9)<f(36)
f(x)是定义在0到正无穷上的增函数
所以
3x+9<36
3x<27
x<9
f(x)是定义在0到正无穷上的增函数
所以x>0
所以不等式的解为
0<x<9 展开
:若f(6)=1,解不等式f(x+3)-f(1/x)<-2
f(x)是定义在0到正无穷上的增函数,且对一切x,y>0,满足f(x/y)=f(x)-f(y)
令x=y=1
f(1)=f(1)-f(1)=0
f(1)=0
f(6)=1
令x=36,y=6
f(36/6)=f(36)-f(6)
f(6)=f(36)-f(6)
2f(6)=f(36)
f(36)=2
f(x+3)-f(1/3)<2
对一切x,y>0,满足f(x/y)=f(x)-f(y)
f[(x+3)/(1/3)]<2=f(36)--------------------------------为什么f(x+3)是f(x)而f(1/3)是f(y)
f(3x+9)<f(36)
f(x)是定义在0到正无穷上的增函数
所以
3x+9<36
3x<27
x<9
f(x)是定义在0到正无穷上的增函数
所以x>0
所以不等式的解为
0<x<9 展开
2个回答
展开全部
为什么f(x+3)是f(x)而f(1/3)是f(y)?
因为对一切x,y>0,满足f(x/y)=f(x)-f(y),
f(x/y)=f(x)-f(y)是一个等式,两边是等价的,
因此只要能写成f(x)-f(y)形式且满足x,y>0的式子,均与f(x/y)相等。
题目是:若f(6)=1,解不等式f(x+3)-f(1/x)<-2
我的解法是
f(x+3)-f(1/x)<-2
即
f(1/x)-f(x+3)>2
所以
f[1/(x(x+3))]>f(36)
即解
x^2+3x-1/36<0
因为对一切x,y>0,满足f(x/y)=f(x)-f(y),
f(x/y)=f(x)-f(y)是一个等式,两边是等价的,
因此只要能写成f(x)-f(y)形式且满足x,y>0的式子,均与f(x/y)相等。
题目是:若f(6)=1,解不等式f(x+3)-f(1/x)<-2
我的解法是
f(x+3)-f(1/x)<-2
即
f(1/x)-f(x+3)>2
所以
f[1/(x(x+3))]>f(36)
即解
x^2+3x-1/36<0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-10-27
展开全部
xy=55且5x=55则x=?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询