在数列{an}中,a1=2,且an+1=(2an-1)/(an+4),bn=1/(an+1) 求证{bn}为等差数列、{an}的通项公式
1个回答
展开全部
a(n+1)=(2an-1)/(an+4)
a(n+1)+1=(2an-1)/(an+4)+1
=(3an+3)/(an+4)
1/[a(n+1)+1]=(an+4)/[3(an+1)]
=(1/3)[1+3/(an+1)]
=(1/3)+1/(an+1)
b(n+1)=bn+1/3
b1=1/(a1+1)=1/3
即bn为首项为1/3,公差为1/3的等差数列;
b(n+1)=bn+1/3
bn=1/3+(n-1)/3=n/3=1/(an+1)
an+1=3/n
an=(3-n)/n
a(n+1)+1=(2an-1)/(an+4)+1
=(3an+3)/(an+4)
1/[a(n+1)+1]=(an+4)/[3(an+1)]
=(1/3)[1+3/(an+1)]
=(1/3)+1/(an+1)
b(n+1)=bn+1/3
b1=1/(a1+1)=1/3
即bn为首项为1/3,公差为1/3的等差数列;
b(n+1)=bn+1/3
bn=1/3+(n-1)/3=n/3=1/(an+1)
an+1=3/n
an=(3-n)/n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询