在数列{an}中,a1=2,an=2an-1+2^(n+1)(n>=2,)令bn=an/2^n,求证bn是等差数列,并写出其通项公式;
4个回答
展开全部
解:
∵an=2a(n-1)+2^(n+1)
且2^n≠0,等式两边同乘1/2^n,可得:
an/2^n = [2a(n-1)]/(2^n) + 2^(n+1)/2n
an/2^n - [a(n-1)]/[2^(n-1)] = 2
∵bn=an/(2^n),带入上式,可得:
bn - b(n-1) = 2
∴数列{bn}是以b1=a1/2=1为首项,公差为2的等差数列
∴bn=b1+(n-1)d=1+2(n-1) = 2n-1
另:∵an=bn (2^n)
=(2n-1)(2^n)
也求得了an
∵an=2a(n-1)+2^(n+1)
且2^n≠0,等式两边同乘1/2^n,可得:
an/2^n = [2a(n-1)]/(2^n) + 2^(n+1)/2n
an/2^n - [a(n-1)]/[2^(n-1)] = 2
∵bn=an/(2^n),带入上式,可得:
bn - b(n-1) = 2
∴数列{bn}是以b1=a1/2=1为首项,公差为2的等差数列
∴bn=b1+(n-1)d=1+2(n-1) = 2n-1
另:∵an=bn (2^n)
=(2n-1)(2^n)
也求得了an
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=2an-1+2^(n+1)(n>=2,)令bn=an/2^n
bn=an-1/2^(n-1)+2,则bn+1=an/2^n+2
bn+1-bn=an/2^n-an-1/2^(n-1)=an-2an-1/2^n=2^(n+1)/2^n=2
所以bn是公差为2的等差数列
bn=an-1/2^(n-1)+2,则bn+1=an/2^n+2
bn+1-bn=an/2^n-an-1/2^(n-1)=an-2an-1/2^n=2^(n+1)/2^n=2
所以bn是公差为2的等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由bn=an/2^n 可知
b(n-1)=a(n-1)/2^(n-1)
bn-b(n-1)=an/2^n-a(n-1)/2^(n-1)=[an-2a(n-1)]/(2^n)
由an=2an-1+2^(n+1)(n>=2,) 可知 an-2a(n-1)=2^(n+1)
所以[an-2a(n-1)]/(2^n)=2 所以bn-b(n-1)=2
所以bn是等差数列 公差为2
b1=a1/2^1 且a1=2 所以 b1=1
所以bn的通项公式为 bn=1+2(n-1) (n>1)
b(n-1)=a(n-1)/2^(n-1)
bn-b(n-1)=an/2^n-a(n-1)/2^(n-1)=[an-2a(n-1)]/(2^n)
由an=2an-1+2^(n+1)(n>=2,) 可知 an-2a(n-1)=2^(n+1)
所以[an-2a(n-1)]/(2^n)=2 所以bn-b(n-1)=2
所以bn是等差数列 公差为2
b1=a1/2^1 且a1=2 所以 b1=1
所以bn的通项公式为 bn=1+2(n-1) (n>1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询