
帮忙解初中数学几何题!!!急!
如图,在△ABC中,AB=AC,AD⊥BC于D,E、G分别为AD、AC边的中点,DF⊥BE于F。求证:FG=DG。...
如图,在△ABC中,AB=AC,AD⊥BC于D,E、G分别为AD、AC边的中点,DF⊥BE于F。求证:FG=DG。
展开
1个回答
展开全部
证明:延长BE,DG,两线相交于H
AB=AC,AD垂直BC于D
则BD=DC
E ,G分别为AD, AC中点,由中位线定理
则EG‖DC,EG=DC/2=BD/2
所以△HEG∽△HBD
所以HG/HD=EG/BD=1/2
即G为DH中点
又DF垂直BE于F,∠DFH=90°
所以由直角三角形斜边中线等斜边一半,
得FG=DH/2=DG
即FG=DG
AB=AC,AD垂直BC于D
则BD=DC
E ,G分别为AD, AC中点,由中位线定理
则EG‖DC,EG=DC/2=BD/2
所以△HEG∽△HBD
所以HG/HD=EG/BD=1/2
即G为DH中点
又DF垂直BE于F,∠DFH=90°
所以由直角三角形斜边中线等斜边一半,
得FG=DH/2=DG
即FG=DG

2025-09-15 广告
提到办公用纸的厂家,金宝兄弟纸业可以了解一下。深圳市金宝兄弟纸业有限公司专业从事各类办公用纸、印刷、生产与服务。公司拥有切纸机、印刷机器加工设备;全自动高速卷筒分切机、平切机、全自动包装机、电脑打印纸机、不干胶柔版印刷机、六色印刷机等设备。...
点击进入详情页
本回答由金宝兄弟纸业提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询