在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E。

求证;①△ABC为等边三角形。②AE=1/3CE.急啊啊啊啊啊啊啊啊啊啊!... 求证;①△ABC为等边三角形。②AE=1/3CE.
急啊啊啊啊啊啊啊啊啊啊!
展开
帐号已注销
2010-10-31 · TA获得超过1288个赞
知道小有建树答主
回答量:696
采纳率:0%
帮助的人:541万
展开全部

(1)证明:如图所示

         连接CD. 由弦切角定理可知,∠EDC=∠DBC

 

         因为圆的直径所对的圆周角是直角,所以∠BDC=∠ADC=90°

         ∵DE⊥AC  

         ∴Rt△ADC∽Rt△DEC 

         ∴∠DAC=∠EDC 

         ∵AB=AC

         ∴∠DBC=∠BCA

       综上所述:∠DBC=∠BCA=∠DAC

      因此,△ABC为等边三角形.

(2)解:在Rt△EDA中,sin∠EDA=AE/DA=sin30°=1/2

         

         那么AE/AB=1:4=AE/AC

 

         因此AE/EC=1:3

 

         即AE=1/3CE

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式