1个回答
展开全部
令x<0,则-x>0,∴f(x)=-f(-x)=-(-x)/[1-2^(-x)]=(x*2^x)/(2^x-1)
x/(1-2^x) (x>0)
∴f(x)=
(x*2^x)/(2^x-1) (x<0)
当x>0时,2^x>1 => 1-2^x<0,则f(x)>-x/3
=>x/(1-2^x)>-x/3
=>2^x-1>3
=>x>2
当x<0时,2^x<1 => 2^x-1<0,则f(x)>-x/3
=>(x*2^x)/(2^x-1)>-x/3
=>4*2^x>1
=>x>-2 ∵x<0 ∴-2<x<0
综上所述,原不等式的解集为(-2,0)∪(2,+∞)。
x/(1-2^x) (x>0)
∴f(x)=
(x*2^x)/(2^x-1) (x<0)
当x>0时,2^x>1 => 1-2^x<0,则f(x)>-x/3
=>x/(1-2^x)>-x/3
=>2^x-1>3
=>x>2
当x<0时,2^x<1 => 2^x-1<0,则f(x)>-x/3
=>(x*2^x)/(2^x-1)>-x/3
=>4*2^x>1
=>x>-2 ∵x<0 ∴-2<x<0
综上所述,原不等式的解集为(-2,0)∪(2,+∞)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询