展开全部
证明:讨论:1,当斜率k不存在时,直线为x=p/2.与抛物线交于A(p/2,p)和B(p/2,-p).准线方程为:x=-p/2。则点C(-p/2,-p).显然直线AC过原点。(因为A与C关于原点对称。)
2,斜率存在时,设直线方程为:y=k(x-p/2),与抛物线交点分别为A(x1,y1)B(x2,y2).则点C(-p/2,y2).其中 x1*x2 = p^2/4 , y1*y2 = —P^2 .
直线OC的斜率为k1=y2/(-p/2)=-2y2/p;直线AO的斜率为k2=y1/x1.
简单代换一下,就得k1=k2.所以A,O,C三点共线。即直线AC过原点。
2,斜率存在时,设直线方程为:y=k(x-p/2),与抛物线交点分别为A(x1,y1)B(x2,y2).则点C(-p/2,y2).其中 x1*x2 = p^2/4 , y1*y2 = —P^2 .
直线OC的斜率为k1=y2/(-p/2)=-2y2/p;直线AO的斜率为k2=y1/x1.
简单代换一下,就得k1=k2.所以A,O,C三点共线。即直线AC过原点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询