椭圆的焦点公式怎样的
3个回答
展开全部
根据a^2-b^2=c^2,其中a为长轴长,b为短轴长,c为焦距。
如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。
扩展资料:
基本性质
1、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
2、顶点:(a,0)(-a,0)(0,b)(0,-b)。
3、离心率:
4、离心率范围:0<e<1。
5、离心率越小越接近于圆,越大则椭圆就越扁。
6、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。
7、
8、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。
9、椭圆的周长等于特定的正弦曲线在一个周期内的长度。
参考资料来源:百度百科-椭圆的标准方程
2013-12-06
展开全部
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x²/a²+y²/b²=1 (a>b>0)
2)焦点在Y轴时,标准方程为:y²/a²+x²/b²=1 (a>b>0)
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。[4]
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即
F点在Y轴
标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过很复杂的代数计算得到。
1)焦点在X轴时,标准方程为:x²/a²+y²/b²=1 (a>b>0)
2)焦点在Y轴时,标准方程为:y²/a²+x²/b²=1 (a>b>0)
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。[4]
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即
F点在Y轴
标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过很复杂的代数计算得到。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
椭圆方程:x^2/a^2+y^2/b^2=1;(a>b>0)
所以c^2=a^2-b^2;故焦点是,(c,0),(-c,0);
如果不是一般的,也要化成标准形:
(x-d)^2/a^2+(y-f)^2/b^2=1;(a>b>0);
同样c^2=a^2-b^2;
所以在原点时(c,0),(-c,0);
但是该 方程是由原点标准时,沿(d,f)平移的,
所以焦点是 (c+d,f),(-c+d,f);
y轴上类似
所以c^2=a^2-b^2;故焦点是,(c,0),(-c,0);
如果不是一般的,也要化成标准形:
(x-d)^2/a^2+(y-f)^2/b^2=1;(a>b>0);
同样c^2=a^2-b^2;
所以在原点时(c,0),(-c,0);
但是该 方程是由原点标准时,沿(d,f)平移的,
所以焦点是 (c+d,f),(-c+d,f);
y轴上类似
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询