如图,在△ABC中,AB=AC,D为BC上任意一点。求证:AB²=AD²+BD·DC.
展开全部
取BC中点E,连接AE,∵AB=AC,∴AE垂直于BC,∴AD²=AE²+DE²
∵BE=CE,∴BD*DC=(EC+DE)(EC-DE)=(BC+DE)(BC+DE)=BC²-DE²
∵△ADE为直角三角形,∴AD²=AE²+BE²
∴AD²+BD·DC=AE²+DE+BE²-DE²=AE²+BE²=AB²
∵BE=CE,∴BD*DC=(EC+DE)(EC-DE)=(BC+DE)(BC+DE)=BC²-DE²
∵△ADE为直角三角形,∴AD²=AE²+BE²
∴AD²+BD·DC=AE²+DE+BE²-DE²=AE²+BE²=AB²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询